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1 The Original Way π+ Production Uncertainties

Were Propagated

For the oscillation result the uncertainties associated with π+ production by 8 GeV
protons were propagated through to an error matrix in reconstructed neutrino energy
in the following way:-

1. Using the results from the HARP and E910 experiments [1, 2] the two dimen-
sional angular and momentum distribution of π+ produced by protons incident
on Be is fit to the Sanford Wang functional form. The result is a set of 8 best
fit Sandford Wang parameters and the 8x8 error matrix that goes with them
[3]. The Sanford Wang function is

SW (p, θ; c) ≡ c1p
c2

(

1 −
p

pp − 1

)

exp

(

−c3
pc4

pc5
p

− c6θ(p − c7pp cosc8 θ)

)

(1)

2. In the MultisimMatrix analysis framework package the 8 best fit SW param-
eters and their error matrix are taken to describe an 8 dimensional Gaussian
probability distribution for the SW parameters. This distribution is drawn from
1000 times to form 1000 SW parameter sets, each, presumably, allowed by the
HARP/E910 data.

3. Define cCV to be the SW parameter set used for the Beam Monte Carlo simula-
tion, and cα to be the 1000 alternative SW parameter sets drawn in the previous
step. One can then use the ratio

SW (p, θ; cα)

SW (p, θ; cCV )
(2)

to reweight each event of a dataset 1000 times. In this way 1000 alternative
datasets can be mocked up that span the range allowed by the Sanford Wang
function and it’s uncertainty.
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Figure 1: The HARP π+ production error matrix. The fractional errors on the p− θ

bins are shown on the left and the correlation matrix for those bins is shown on the
left. For further details see Sec. 2.1

4. To form an error matrix for the EnuQE distribution of the dataset form the
EnuQE histogram for each of the 1000 alternative datasets. These histograms
are then combined to form the error matrix for the EnuQE distribution of the
dataset. If the CV EnuQE histogram is labelled nCV

i and the 1000 alternative
histograms nα

i (with i running over the bins) the expression to form the error
matrix is

Mij =
1

1000

1000
∑

α=1

(

nα
i − nCV

i

) (

nα
j − nCV

j

)

(3)

2 The Original Method in Practice

2.1 The HARP Error Matrix

Fig. 1 shows a graphical representation of the HARP error matrix. The harp results
are provided in 6 π+ angle bins and 13 π+ momentum bins. This is 6 × 13 = 78
numbers and a 78x78 error matrix to go with them. The left hand plot of Fig. 1 shows
the 78 fractional errors on the harp bins. The first six bins are the uncertainties on
the six angles of the lowest momentum, the next six bins are the errors in the six
angles of the next lowest momentum bin, and so on. One can see that in the mid
momentum bins that tend to create neutrinos that MiniBooNE sees, the errors on
the harp results are roughly 7%. On the right hand side of Fig. 1 is a graphical
representation of the 78x78 correlation matrix where the bin ordering is the same as
the left hand side plot. One can see that the plot is mostly green, indicating errors
that are largely uncorrelated, with some red creeping in at low and high π+ momenta.
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2.2 The Sanford-Wang Fit

The method for propagating the π+ outlined in Sec. 1 works is, inprinciple, a perfectly
valid approach, but it does rely on the Sanforf Wang function fitting the HARP data
very well. Unfortunately, the SW function is a tolerable, but not particularly good
fit to the HARP data. This can bee seen in Fig.11 of [3]. As a result of the fit
quality the fit is adjusted to ensure a reasonable χ2. The details are given in [3], but
the net effect is an 8x8 SW parameter error matrix where there is a ∼ 18% error
on c1, the first SW parameter. This translates into a ∼ 18% normalization error,
since c1 just multiplies the whole Sw function (see Eqn. 1). Therefore the ∼ 7%
uncorrelated errors of the HARP error matrix have been turned into ∼ 18% fully,
correlated normalization errors by the fitting procedure.

2.3 Propagating the SW fit to an Error Matrix in EνQE

Following the last two steps of Sec. 1 the Sanford-Wang fit parameters error matrix
of the previous section is propagated into an error matrix in reconstructed neutrino
energy, EνQE. Fig. 2 shows a graphical representation of this EνQE matrix using the
same conventions a Fig. 1. In this figure there are 53 bins represented, the first 18
are bins of EνQE for the track based (TBA) cuts applied to a fully oscilalted sample,
the second 18 are bins of EνQE for the track based (TBA) electron cuts applied to a
cocktail sample, and the final 17 bins are bins of EνQE for the track based νµ CCQE
cuts applied to a cocktail sample. The middle sample is a mix of event types that are
not subject to π+ production errors (e.g. π0s) and those that are and so should be
disregarded when looking to see the effect of π+ production errors. The first sample
(first 18 bins) are high purity νe CCQE events and the third sample is high purity νµ

CCQE or CCπ+ events. These two samples show that the π+ production errors have
been turned into a ∼ 16% almost, pure normalization error.

By using the Sanford-Wang fit the initally ∼ 7%, largely uncorrelated errors of the
HARP error matrix have been turned into a ∼ 16%, almost completely normalizastion
error matrix in EνQE. This is not a faithful transmission of the information in the
HARP error matrix.

3 Improving the Propagation of the π+ Production

Uncertainties

How can the SW fitting distortion of the π+ errors be avoided? In the past parame-
terizations of π+ production data were needed as the data was too sparse or not at the
correct proton beam energy. Thi sis no longer true with the high quality HARP data
that was taken at exactly the MiniBooNE proton beam energy. One can therefore
consider throwing away the step of parameterising the HARP data and replace it with
a simple spline interpolation. With that in mind the HARP results can be propagated
through to an error matrix in reconstructed neutrino energy in the following way:-

1. Draw from the 78x78 HARP error matrix 1000 times and add to the HARP
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Figure 2: The π+ production uncertainties propagated via a Sanford Wang fit into
errors on the EνQe distribution of fully oscillated events, nue candidate events, and
numu CCQE candidate events. The left hand plot shows the fractional error in each
EνQE bin and the right hand side shows the correlation matrix. See Sec. 2.3 for
details.

CV to create 1000 alternative HARP results each allowed by the HARP error
matrix

2. Use splines to interpolate (and extrapolate) each of the 1000 alternate HARP
results. One can define SP (p, θ;kα) as the spline function in the π+ momentum
p and angle θ controlled by the spline parameters kα for multisim α. One can
then use the ratio

SP (p, θ;kα)

SW (p, θ; cCV )
(4)

to reweight each event of a dataset 1000 times. Note that the CV Sanford-
Wang function is in the denominator as this was the function used to generate
the events. In this way 1000 alternative datasets can be mocked up that span the
range allowed by the HARP result and it’s uncertainty. Since the Sanford Wang
function matches the HARP data fairly well one could also consider defining
SP (p, θ;kCV ) to be the spline fit to the HARP CV and reweighting the events
with the ratio

SP (p, θ;kα)

SP (p, θ;kCV )
(5)

Later sections will explore these two alternate weighting schemes.

3. To form an error matrix for the EnuQE distribution of the dataset form the
EnuQE histogram for each of the 1000 alternative datasets. These histograms
are then combined to form the error matrix for the EnuQE distribution of the
dataset. If the CV EnuQE histogram is labelled nCV

i and the 1000 alternative
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histograms nα
i (with i running over the bins) the expression to form the error

matrix is

Mij =
1

1000

1000
∑

α=1

(

nα
i − nCV

i

) (

nα
j − nCV

j

)

(6)

4 The Improved Method in Practice

4.1 The Splines

As described in the previous section, the HARP 78x78 error matrix is drawn from
1000 times to produce 1000 alternate HARP results. A spline interpolation scheme is
then used to interpolate (and extrapolate when needed) the fixed locations in p and
θ of the HARP results. The spline fitting is to the 2D crossection as a function of
p and θ and is done by using the 1D CERNLIB spline routine DCSPLN. First 1D
spline fits are done in θ at values of p close to the desired point, then a final 1D spline
fit in p is done using the results of the θ splines.

Figures 3 and 5 show these splines overlaid with the HARP data and the SW fit.
Fig. 3 has six panels, one for each of the HARP angle bins and each panel gives the
π+ momentum distribution for that angle bin. The red data points are the HARP
results with their uncertainties, the blue curve is the SW fit and the spline multisims
(actually only the first 40) are plotted in black. Fig. 5 is identical to Fig. 5 but shows
the angular distibutions in 13 panels of π+ momentum. Figures 4 and 6 are identical
to Figures 3 and 5, but a profile histogram of the spline curves is plotted instead of
the splines themselves.

It is clear from Figures 4 and 6 that where there is HARP data the spread in the
spline curves nicely matches the HARP error bars. Where there is no HARP data,
particularly at π+ momenta below 1 GeV the splines diverge from the SW fit. It
should be noted that extremely few neutrinos detected by MiniBooNE come from π+

with momenta below 1 GeV. This is shown in Figures 7 and 8 which show the parent
meson momentum of the neutrinos passing nue and numu CCQE cuts respectively.
The only place where the spline curves can get a little crazy and create unreasonable
large weights for events is at large angles. For this reason events that have pion
angles greater than the largest HARP pion angle bin are given a weight as if the
pion angle was in the middle of the largest pion angle bin. This keeps the weights on
these handful of events reasonable, and prevents them creating error matrices that
erroneously explode at large pion angle.

4.2 Propagating the Spline Multisims to an Error Matrix in

EνQE

As noted in Sec. 3, two different reweighting schemes have been used to turn the 1000
spline interpolated alternative HARP results into 1000 EνQE histograms from which
an EνQE error matrix can be formed. The strictly correct scheme weights events

with the ratio SP (p,θ;kα)
SW (p,θ;cCV )

, whereas the approximate scheme uses SP (p,θ;kα)
SP (p,θ;kCV )

, using the
notation developed in Sec. 3. The approximate scheme makes the assumption that
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Figure 3: π+ production cross-section as a function of π+ momentum from 0 to 6
GeV/c. The six panels are for the six π+ angular ranges indicated on the plots. The
red points are the HARP results and uncertainties, the blue curve is the Sandford-
Wang fit and the black points are the first 40 spline interpolated multisims.
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Figure 4: Identical to Fig. 3, but the 40 spline multisims have been replaced by a
profile histogram of all 1000 spline multisims
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Figure 5: π+ production cross-section as a function of π+ angle from 0 to 0.25 rad.
The thirteen panels are for the thirteen π+ momentum ranges indicated on the plots.
The red points are the HARP results and uncertainties, the blue curve is the Sandford-
Wang fit and the black points are the first 40 spline interpolated multisims.
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Figure 6: Identical to Fig. 5, but the 40 spline multisims have been replaced by a
profile histogram of all 1000 spline multisims
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Figure 7: The momentum distribution of the parent meson of neutrinos passing the
TBA nue cuts. The six panels are for the six meson angle ranges indicated. The
normalization is arbitrary
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Figure 8: The momentum distribution of the parent meson of neutrinos passing the
Likelihood based numu CCQE cuts. The six panels are for the six meson angle ranges
indicated. The normalization is arbitrary.
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Figure 9: The π+ production uncertainties propagated via spline interpolation and
the strictly correct reweighting scheme into errors on the EνQe distribution of fully
oscillated events, nue candidate events, and numu CCQE candidate events. The left
hand plot shows the fractional error in each EνQE bin and the right hand side shows
the correlation matrix. See Sec. 4.2 for details.

the SW curve is very close to the HARP data points. It exists largely as an historical
accident:- the π+ propagation uncertainties for the low energy electron candidate
excess paper uses the approximate scheme. It will be shown in a later section that
the two schemes yield almost exactly the same constrained uncertainties.

Fig. 9 shows the fractional errors and correlation matrix in EνQE that results when
the exact scheme is used and Fig. 10 shows the same for the approximate scheme.
The binning and datasets used in these figures are identical to earlier figures of this
type in this document.

The correct and approximate weightng schemes have EνQE errors that are very
similar except at the very lowest couple of energy bins where the correct scheme
has noticable larger errors. The correct scheme also has less correlated errors, as
evidenced by the amount of green in the two correlation matrix plots on the right
hand side of Figures 9 and 10.

It is clear that both correct or approximate weighting schemes produce final EνQE

error matrices that are less correlated and have much smaller errors than the matrix
produced by propagating SW errors. They seem to do a much more accurate job of
propagating the HARP error matrix.

4.3 The Effect on Low E Constrained Errors

Table 1 shows the effect of the different ways of propagating the π+ production
uncertainties on the nue candidates. For the three standard energy bins and for the
TBA se;ection with the full 6.462 × 1020 POT the unconstrained and constrained
number of predicted background events is show for the full set of uncertainties and
the π+ production uncertainties propagated either via a Sanford Wang fit, via the
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Figure 10: The π+ production uncertainties propagated via spline interpolation and
the approximate reweighting scheme into errors on the EνQe distribution of fully
oscillated events, nue candidate events, and numu CCQE candidate events. The left
hand plot shows the fractional error in each EνQE bin and the right hand side shows
the correlation matrix. See Sec. 4.2 for details.

correct Spline approach, or via the approximate spline approach described in the
previous section. Table 2 shows exactly the same thing, but for the TBA+Dirtcut
event selection. In all cases the method of propagating the π+ errors doesn’t make
much difference to the final answer. Whilst analyses should, in general, use the
correct spline method it is a tolerable approximation for the low E analysis to use the
approximate spline method.

A π− Splines

Results on π− have also been produced by HARP and can be propagated into error
matrices in exactly the same way as the π+ results. Figs 11 to 16 are the π− versions
of Figs 3 to 8. It is clear that, as expected, the π− splines have similar deviations
from their CV as the π+ splines do. Finally, Fig. 17 shows the π− production EνQE

error matrix. Unsurprisingly it is very similar to Fig. 9, the π+ version.
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Energy Bin Data Bkgd Pred. SW Fit Spline Approx. Spline
unconstr. 380.5±48.3 380.5±54.5 380.5±47.6

200-300 MeV 427 constr. 384.4±44.5 388.9±45.9 386.0±44.3
signif. 0.96σ 0.83σ 0.93σ

unconstr. 330.6±42.9 330.6±43.4 330.6±40.6
300-475 MeV 428 constr. 328.4±31.9 330.2±32.1 330.0±31.8

signif. 3.12σ 3.05σ 3.08σ
unconstr. 418.9±70.3 418.9±64.4 418.9±63.4

475-1250 MeV 431 constr. 410.7±39.2 412.0±37.8 412.7±37.6
signif. 0.52σ 0.50σ 0.49σ

Table 1: The effect of different ways of propagating π+ production uncertainties into
the predicted number of nue candidates passing TBA cuts and the uncertainty in that
number. Numbers are given both the case where the numu constraint is applied and
where it is not. The significance of the excesses is also given.

Energy Bin Data Bkgd Pred. SW Fit Spline Approx. Spline
unconstr. 181.1±30.0 181.1±32.7 181.1±29.5

200-300 MeV 232 constr. 185.5±26.1 188.5±26.6 186.8±26.0
signif. 1.78σ 1.64σ 1.74σ

unconstr. 228.8±33.0 228.8±33.0 228.8±31.3
300-475 MeV 312 constr. 226.8±24.6 229.0±24.8 228.3±24.5

signif. 3.46σ 3.35σ 3.42σ
unconstr. 391.4±67.0 391.4±61.5 391.4±60.6

475-1250 MeV 408 constr. 384.1±37.4 385.6±36.0 385.9±35.7
signif. 0.64σ 0.62σ 0.62σ

Table 2: The effect of different ways of propagating π+ production uncertainties into
the predicted number of nue candidates passing TBA+dirtcut cuts and the uncer-
tainty in that number. Numbers are given both the case where the numu constraint
is applied and where it is not. The significance of the excesses is also given.
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Figure 11: The π− version of Fig. 3. The π− production cross-section as a function of
π− momentum from 0 to 6 GeV/c. The six panels are for the six π− angular ranges
indicated on the plots. The red points are the HARP results and uncertainties,
the blue curve is the Sandford-Wang fit and the black points are the first 40 spline
interpolated multisims.
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Figure 12: The π− version of Fig. 4. Identical to Fig. 11, but the 40 spline multisims
have been replaced by a profile histogram of all 1000 spline multisims
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Figure 13: The π− version of Fig. 5. The π− production cross-section as a function of
π− angle from 0 to 0.25 rad. The thirteen panels are for the thirteen π− momentum
ranges indicated on the plots. The red points are the HARP results and uncertainties,
the blue curve is the Sandford-Wang fit and the black points are the first 40 spline
interpolated multisims.
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Figure 14: The π− version of Fig. 6. Identical to Fig. 13, but the 40 spline multisims
have been replaced by a profile histogram of all 1000 spline multisims
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Figure 15: The momentum distribution of the parent meson of neutrinos passing the
TBA nue cuts in anti-neutrino mode. The six panels are for the six meson angle
ranges indicated. The normalization is arbitrary
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Figure 16: The momentum distribution of the parent meson of neutrinos passing the
Likelihood based numu CCQE cuts in anti-neutrino mode. The six panels are for the
six meson angle ranges indicated. The normalization is arbitrary.
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Figure 17: This is the π− version of Fig. 9. The π− production uncertainties propa-
gated via spline interpolation and the strictly correct reweighting scheme into errors
on the EνQe distribution of fully oscillated nuebar events, nuebar candidate events,
and numubar CCQE candidate events. The left hand plot shows the fractional error
in each EνQE bin and the right hand side shows the correlation matrix. See Sec. 4.2
for details.
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